An hypergraph based formulation for an Automatic Storage Design problem

Luis Marques, François Clautiaux, Aurélien Froger

Univ. Bordeaux, CNRS, Inria, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France

June 29, 2023

		ues

Table of Contents

1 Introduction

- 2 Automatic Storage Design
- 3 Improving the arc flow formulation
- 4 Numerical results
- 5 Conclusion

Luis		

э

(a)

Introduction

Arc flow formulations are increasingly popular in the field of integer programming, [de Lima et al., 2022].

Such formulations are built from graphs, often transitions graphs of dynamic programs.

5 3 6 8 10

Figure: Example of arc flow formulation

3 × 4 3 ×

Introduction

Arc flow formulations are increasingly popular in the field of integer programming, [de Lima et al., 2022].

Such formulations are built from graphs, often transitions graphs of dynamic programs.

Figure: Example of arc flow formulation

3 × 4 3 ×

Introduction

Arc flow formulations are increasingly popular in the field of integer programming, [de Lima et al., 2022].

Such formulations are built from graphs, often transitions graphs of dynamic programs.

Figure: Example of arc flow formulation

∃ ► < ∃ ►</p>

Arc flow formulations and dynamic programming

Bacwkards recursive dynamic program:

- s: initial state
- t: terminal state
- f: function associating a state v to the minimum cost of going from state s to v
- $c_{u,v}$: cost of going from state u to state v
- $\Gamma^{-}(v)$: set of states preceding v

$$f(v) = egin{cases} 0 & ext{if } v = s \ \min_{u \in \Gamma^-(v)} \{c_{u,v} + f(u)\} & ext{otherwise} \end{cases}$$

JPOC'13

Arc flow formulations and dynamic programming

- G = (V, A): transition graph
- R: set of resources
- For every resource $r \in R$:
 - ► *q_r*: resource capacity
- For every arc $a \in A$:
 - c_a: arc cost

r

• $b_{a,r}$: resource consumption of resource r

ninimize
$$\sum_{a \in A} c_a x_a$$
 (1)

subject to

$$\sum_{a \in A^-(v)} x_a - \sum_{a \in A^+(v)} x_a = 0 \quad v \in V \setminus \{s, t\}$$

$$(2)$$

$$\sum_{a \in A^-(t)} x_a = 1 \tag{3}$$

$$\sum_{a \in A(r)} b_{a,r} x_a \le q_r \qquad r \in R$$
(4)

 $x_a \in \mathbb{N}$ $a \in A$ (5)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 29, 2023 5 / 26

3

Extending arc flow formulation to hypergraphs

Bacwkards recursive dynamic program:

- f: function associating a state v to the minimum cost of going from state s to v
- $\Gamma^{-}(v)$: set of sets of states v can be decomposed into
- $c_{U,v}$: cost of decomposing state v into the set of states U

$$f(v) = \begin{cases} 0 & \text{if } v = s \\ \min_{U \in \Gamma^-(v)} \{ c_{U,v} + \sum_{u \in U} f(u) \} & \text{otherwise} \end{cases}$$

Extending arc flow formulations to hypergraphs

Hypergraph

Graph

- The flow conservation constraints form a totally unimodular matrix
- The domain of variables is $\{0,1\}$

- The flow conservation constraints form a totally dual integral matrix (TDI) [Martin et al., 1990]
- The domains of variables is unbounded and bounding those we can breaks the TDI property
- Flow may be multiplied without cost

Figure: Example of half a unit of flow creating one unit of flow

Luis	М	ard	lies	
Luis		any	ues	

Table of Contents

Introduction

2 Automatic Storage Design

Improving the arc flow formulation

4 Numerical results

5 Conclusion

Lui		

э

A B F A B F

Image: Image:

Automatic Storage Design

We consider a two-phase and three-dimensional variant of the temporal knapsack problem called *Automatic Storage Design* problem:

- M: Storage box with a height H, a width W and a length L.
- \mathcal{I} : Set of items. Each item *i* has a *height* h_i , a *width* w_i , a *length* l_i , a *profit* p_i , a *time period* s_i at which it enters the storage and a *duration* d_i during which the item is stored.
- \mathcal{T} : Set of consecutive time periods.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automatic Storage Design

The decisions represent a box design followed by an assignment of items.

- Partition the box to form shelves and partition each shelf to form compartments.
- Assign items to compartments.

Objective: Maximise the sum of profits of items assigned to the box.

Luis Marques	JPOC'13	June 29, 2023	10 / 26

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Automatic Storage Design Compact formulation

Decision variables:

- z_i : 1 if a shelf of height h_i has been created, 0 otherwise.
- *y_{i,j}*: 1 if a compartment of width *w_j* has been created in the shelf of height *h_i* such that *i* ≤ *j*, 0 otherwise.
- x_{i,j,k}: 1 if item k has been assigned to the compartment of height h_i and width w_j such that i ≤ j ≤ k, 0 otherwise.

		ues

Automatic Storage Design

Compact formulation

es	JPOC'13	June 29, 2023	12 / 26
	$x_{i,j,k} \in \{0,1\}$	$i,j,k\in\mathcal{I},k\geq j\geq i$, $k\in\mathcal{I},k\in\mathcal{I}$	596
	$y_{i,j} \in \{0,1\}$	$i,j\in\mathcal{I},j\geq i$	
	$z_i \in \{0,1\}$	$i \in \mathcal{I}$	
	$y_{i,j} \leq z_i$	$i,j\in\mathcal{I},j\geq i$	
	$x_{i,j,k} \leq y_{i,j}$	$i,j,k\in\mathcal{I},k\geq j\geq i$	
	$\sum_{\substack{i,j\in\mathcal{I}\\i\leq j\leq k}} y_{ij,k} =$		
	$\sum x_{i,j,k} \leq 1$	$k\in\mathcal{I}$	
	$\overline{k \in \mathcal{I} \atop k \geq j} \\ s_k \leq t \leq s_k + d_k$		
	$\sum I_k x_{i,j,k} \leq L$	$i,j\in\mathcal{I},j\geq i,t\in\mathcal{T}$	
	$\sum_{\substack{j \in \mathcal{I} \\ j \ge i}} y_{i,j} w_j \le W$	$i \in \mathcal{I}$	
	i∈I		
subject to	$\sum z_i h_i \leq H$		
maximize	$\sum_{i \in \mathcal{I}} \sum_{\substack{j \in \mathcal{I} \\ j \ge i}} \sum_{\substack{k \in \mathcal{I} \\ k \ge j}} p_i x_{i,j,k}$		

Automatic Storage Design Dynamic program

Each state is noted by $(h, w, l)^s$, h being the height, w the width, l the length and s being the stage.

$$\alpha^{1}(h, w, l) = \max_{h' \in \mathcal{H}, h' \le h} \{ \alpha^{2}(h', w, l) + \alpha^{1}(h - h', w, l) \}$$
$$\alpha^{2}(h, w, l) = \max_{w' \in \mathcal{W}_{h}, w' < w} \{ \alpha^{3}(h, w', l) + \alpha^{2}(h, w - w', l) \}$$

States $(h, w, l)^3$, which are temporal knapsack problems, are modeled by events as in [Clautiaux et al., 2021].

イロト 不得下 イヨト イヨト 二日

Automatic Storage Design Dynamic program

$$\alpha^{1}(h, w, l) = \max_{h' \in \mathcal{H}, h' \le h} \{ \alpha^{2}(h', w, l) + \alpha^{1}(h - h', w, l) \}$$
$$\alpha^{2}(h, w, l) = \max_{w' \in \mathcal{W}_{h}, w' \le w} \{ \alpha^{3}(h, w', l) + \alpha^{2}(h, w - w', l) \}$$

3

14 / 26

(a)

Automatic Storage Design Arc flow formulation

Let G = (V, A) be the transition hypergraph associated with the dynamic program. Let A(i) be the set of arcs corresponding to assigning item i in a compartment.

maximize
$$\sum_{a \in A} p_a x_a$$

subject to
$$\sum_{a \in A^-(v)} x_a - \sum_{a \in A^+(v)} x_a = 0 \quad v \in V \setminus \{s, t\}$$
$$\sum_{a \in A^-(t)} x_a = 1$$
$$\sum_{a \in A(i)} x_a \leq 1 \qquad i \in \mathcal{I}$$
$$x_a \in \mathbb{N} \qquad a \in A$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Introduction

- 2 Automatic Storage Design
- 3 Improving the arc flow formulation
 - 4 Numerical results

5 Conclusion

uis		

- < ∃ →

▲ 西部

Improve the linear relaxation

Valid cuts and algorithm changes

Suppose a box with height 2 and width 4 and two items with heights 1 and 2 and widths 4 and 1.

Flow recombines to form a compartment.

Improve the linear relaxation

Valid cuts and algorithm changes

Suppose a box with height 2 and width 4 and two items with heights 1 and 2 and widths 4 and 1.

Flow recombines to form a compartment.

Valid cut:

$$\sum_{a \in A(i)} x_a - \sum_{h' \ge h_i} \sum_{a \in A(h)} x_a \le 0 \quad i \in \mathcal{I}$$

Luis Marques

Detect trivial subproblems

A subproblem is trivial if there exists a solution such that every item that fits is assigned.

Reduce the size of the hypergraph Other improvements

э

(a)

Table of Contents

Introduction

- 2 Automatic Storage Design
- Improving the arc flow formulation
- 4 Numerical results

5 Conclusion

uis		

э

(a)

Numerical results

Experiments configuration

Two classes of instances are generated:

- H = W = L = 500.
- $h_i, w_i, l_i, p_i \in \mathcal{U}(80, 170).$
- *s_i* and *d_i* are generated by cliques for the first class, *s_i*, *d_i* ∈ U(0, 1000) for the second class, similarly to [Caprara et al., 2013]

Group	$ \mathcal{I} $
C10	~ 75
C15	~ 110
C30	~ 215
U50	50
U70	70
U100	100
U200	200

Table: Average number of items per group of instances

Machine setup: Haswell Intel Xeon E5-2680 v3 CPU at 2.5 GHz with 128 Go RAM. Solver: CPLEX 20.1. Time limit: 30 minutes.

Luis		

Numerical results Comparison of formulations

NbVariables	NbConstraints	IP/LP Gap ^{1,2}	NbSolved
17759	53230	5.97 %	1 / 10
49068	151939	11.73 %	0 / 10
363145	1120488	46.13 %	0/10
5420	69781	0.14 %	9/10
10438	181547	1.30 %	4 / 10
21204	504690	11.41 %	1/10
86361	3791192	70.08 %	1 / 10
-	-	-	16 / 70
	17759 49068 363145 5420 10438 21204	17759 53230 49068 151939 363145 1120488 5420 69781 10438 181547 21204 504690	17759 53230 5.97 % 49068 151939 11.73 % 363145 1120488 46.13 % 5420 69781 0.14 % 10438 181547 1.30 % 21204 504690 11.41 %

Group	NbVertices	NbArcs	IP/LP Gap ^{1,2}	NbSolved
C10	146307	193277	4.48 %	2 / 10
C15	570665	698449	6.50 %	0 / 10
C30	5150654	5933438	31.33 %	0 / 10
U50	17183	32867	0.14 %	9 / 10
U70	30617	59912	1.30 %	3 / 10
U100	48738	102766	5.74 %	1 / 10
U200	150916	369086	3.27 %	4 / 10
Total	-	-	-	19 / 70

Table: Compact MIP formulation

Table: Arc flow formulation

Both formulations have around the same number of constraints but the hypergraph formulation has around 13.3 times more variables.

¹IP/LP Gap formula : BestInteger

²Only instances where the three formulations LPs could be solved are included (\bigcirc) () (\bigcirc) () (\bigcirc) (

Luis Marques

Numerical results

Impact of improvements on hypergraph formulation

Group	NbVertices	NbArcs	IP/LP Gap ^{1,2}	NbSolved
C10	146307	193277	4.48 %	2 / 10
C15	570665	698449	6.50 %	0 / 10
C30	5150654	5933438	31.33 %	0 / 10
U50	17183	32867	0.14 %	9 / 10
U70	30617	59912	1.30 %	3 / 10
U100	48738	102766	5.74 %	1 / 10
U200	150916	369086	3.27 %	4 / 10
Total	-	-	-	19 / 70

Table:	Arc	flow	formulation	

Group	NbVertices	NbArcs	IP/LP Gap ^{1,2}	NbSolved
C10	38398	55888	4.42 %	2 / 10
C15	156530	199988	6.39 %	0 / 10
C30	1860081	2157920	31.32 %	0 / 10
U50	2533	10250	0.14 %	10 / 10
U70	4467	17300	1.30 %	7 / 10
U100	5374	23790	5.27 %	7 / 10
U200	15976	96790	2.77 %	7 / 10
Total	-	-	-	33 / 70

Table: Improved arc flow formulation

The improved version has about 20% of the number of vertices and 29% of the number of arcs.

 2 Only instances where the three formulations LPs could be solved are included ($_{\bigcirc}$). 23 / 26

¹IP/LP Gap formula : <u>|LP-BestInteger|</u> BestInteger|

Table of Contents

Introduction

- 2 Automatic Storage Design
- 3 Improving the arc flow formulation
- 4 Numerical results

Lui		

A B F A B F

Image: Image:

Conclusion

We have seen:

- Arc flow formulations on graphs and hypergraphs and the differences between both tools.
- A newly defined problem and a compact and an arc flow formulation for it.
- Several improvements useful to improve the linear relaxation and reduce the size of the arc flow formulation.

Perspectives:

- Propose further valid inequalities to improve the linear relaxation of the arc flow formulation.
- Thorough computational study on what reductions improve best the linear relaxation and the size of the formulation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References I

- Caprara, A., Furini, F., and Malaguti, E. (2013).
 Uncommon dantzig-wolfe reformulation for the temporal knapsack problem.
 INFORMS Journal on Computing, 25(3):560–571.
- Clautiaux, F., Detienne, B., and Guillot, G. (2021).
 An iterative dynamic programming approach for the temporal knapsack problem.
 European Journal of Operational Research, 293(2):442–456.
- de Lima, V. L., Alves, C., Clautiaux, F., Iori, M., and de Carvalho, J. M. V. (2022). Arc Flow Formulations Based on Dynamic Programming: Theoretical Foundations and Applications.

European Journal of Operational Research, 296(1):3–21.

Martin, R. K., Rardin, R. L., and Campbell, B. A. (1990). Polyhedral Characterization of Discrete Dynamic Programming. *Operations Research*, 38(1):127–138.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >