
Automatic Storage Design

Luis Marques, François Clautiaux, Aurélien Froger

Univ. Bordeaux, CNRS, Inria, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France

May 2023

Luis Marques Automatic Storage Design May 2023 1 / 30

Table of Contents

1 Introduction

2 Automatic Storage Design

3 Dynamic programming formulation

4 Improving the hypergraph formulation

5 Numerical results

6 Conclusion

Luis Marques Automatic Storage Design May 2023 2 / 30

Introduction

Automated storage and retrieval systems have been studied for years in the context of
warehouse optimization. See [Roodbergen and Vis, 2009] for a survey.

Different objectives can be optimised, such as response time, wasted space or overall
profit.

From a cutting&packing point of view, we see the problem as a variant of 3D knapsack
problem. We also consider a time aspect.

Figure: Example of 3D knapsack solution

Luis Marques Automatic Storage Design May 2023 3 / 30

Introduction

Three-dimensional guillotine packing has been less studied.

[de Queiroz et al., 2012]

[Martin et al., 2021]

Two-dimensional packing has been considered in many papers.

see [Iori et al., 2021] for a survey

Temporal knapsack and temporal bin packing have also been studied.

[Caprara et al., 2013]

[Caprara et al., 2016]

[Clautiaux et al., 2021]

[Dell’amico et al., 2020]

Luis Marques Automatic Storage Design May 2023 4 / 30

Table of Contents

1 Introduction

2 Automatic Storage Design

3 Dynamic programming formulation

4 Improving the hypergraph formulation

5 Numerical results

6 Conclusion

Luis Marques Automatic Storage Design May 2023 5 / 30

Automatic Storage Design

The problem is defined as a 3D temporal knapsack problem with additional constraints.

T : Set of consecutive time periods.

M: Storage box with a height H, a width W and a length L.

I: Set of items. Each item i has a height hi , a width wi , a length li , a profit pi , a
time period si at which it enters the storage and a duration di during which the
item is stored.

Figure: Example of design and assignment

Objective: Maximise the sum of profits of items assigned to the box.

Luis Marques Automatic Storage Design May 2023 6 / 30

Automatic Storage Design

The decisions represent a box design followed by an assignment of items.

Partition the box horizontally to form shelves.

Partition the shelves vertically to form compartments.

Assign items to compartments to maximise the profit.

Stage 1

Stage 2

Stage 1 with
modified height S1

S2S3

Figure: Example of automatic storage design

Luis Marques Automatic Storage Design May 2023 7 / 30

Automatic Storage Design

Decision variables:

zi ∈ {0, 1} is equal to 1 if a shelf of height hi with i ∈ I has been created, 0
otherwise.

yi,j ∈ {0, 1} is equal to 1 if a compartment of width wj with j ∈ I has been
created in the shelf of height hi with i ∈ I such that i ≤ j , 0 otherwise.

xi,j,k ∈ {0, 1} is equal to 1 if item k ∈ I has been assigned to the compartment of
height hi with i ∈ I and width wj with j ∈ I such that i ≤ j ≤ k, 0 otherwise.

x1,1,1 = 1

x1,1,3 = 1

y1,1 = 1

x1,2,2 = 1

y1,4 = 1

z1 = 1

Figure: Example of design and assignment

Luis Marques Automatic Storage Design May 2023 8 / 30

Automatic Storage Design

maximize
∑
i∈I

∑
j∈I
j≥i

∑
k∈I
k≥j

pixi,j,k

subject to
∑
i∈I

zihi ≤ H

∑
j∈I
j≥i

yi,jwj ≤ W i ∈ I

∑
k∈I
k≥j

sk≤t≤sk+dk

lkxi,j,k ≤ L i , j ∈ I, j ≥ i , t ∈ T

∑
i,j∈I
i≤j≤k

xi,j,k ≤ 1 k ∈ I

xi,j,k ≤ yi,j i , j , k ∈ I, k ≥ j ≥ i

yi,j ≤ zi i , j ∈ I, j ≥ i

zi ∈ {0, 1} i ∈ I
yi,j ∈ {0, 1} i , j ∈ I, j ≥ i

xi,j,k ∈ {0, 1} i , j , k ∈ I, k ≥ j ≥ i

Luis Marques Automatic Storage Design May 2023 9 / 30

Table of Contents

1 Introduction

2 Automatic Storage Design

3 Dynamic programming formulation

4 Improving the hypergraph formulation

5 Numerical results

6 Conclusion

Luis Marques Automatic Storage Design May 2023 10 / 30

Dynamic programming formulation

We propose a dynamic program to create a transition graph and solve it through a MIP.

Each state is noted by (h,w , l)s , h being the height, w the width, l the length and s
being the stage.

Notations:

H: Set of different heights, i.e. {h : ∃i ∈ I, hi = h}, sorted by non-increasing
value.

W: Set of different widths, i.e. {w : ∃i ∈ I,wi = w}, sorted by non-increasing
value.

Wh: Set of different candidate widths for a shelf of height h, i.e.
{w : ∃i ∈ I, hi ≤ h,wi = w}, sorted by non-increasing value.

Luis Marques Automatic Storage Design May 2023 11 / 30

Dynamic programming formulation

Notations:

αs(h,w , l): Maximum profit of an automatic storage design problem in stage s
with height h, width w and length l by using items from I.

α1(h,w , l) = max
h′∈H,h′≤h

{α2(h′,w , l) + α1(h − h′,w , l)}

α2(h,w , l) = max
w′∈Wh,w

′≤w
{α3(h,w ′, l) + α2(h,w − w ′, l)}

The optimal value of the dynamic program is given by α1(H,W , L).

Luis Marques Automatic Storage Design May 2023 12 / 30

Dynamic programming formulation

Compartments are modeled by events as in [Clautiaux et al., 2021], each item leading
two events.

Notations:

E in: Set of in events.

Eout: Set of out events.

i(e): Item related to event e.

t(e): Time at which e occurs.

Events related to items are ordered from 1 to 2n as follows:

e < e′ if t(e) < t(e′) or
(
t(e) = t(e′) ∧ e ∈ Eout ∧ e′ ∈ E in)

Luis Marques Automatic Storage Design May 2023 13 / 30

Dynamic programming formulation

α3(h,w , l) = α̂3(h,w , l , 2n, 0)

If e ∈ E in ∧ l + li ≤ L:

α̂3(h,w , l , e, d) = max
{ 1

2pi(e) + α̂3(h,w , l + li , e − 1, εi(e)), α̂
3(h,w , l , e − 1, d)

}
If e ∈ E in ∧ l + li > L:

α̂3(h,w , l , e, d) = α̂3(h,w , l , e − 1, d)

If e ∈ Eout ∧ di = 1:

α̂3(h,w , l , e, d) = 1
2pi(e) + α̂3(h,w , l − li , e − 1, d − εi(e))

If e ∈ Eout ∧ di = 0:

α̂3(h,w , l , e, d) = α̂3(h,w , l , e − 1, d)

For every h, w , l and d, α̂3(h,w , l , 0, d) = 0.

Luis Marques Automatic Storage Design May 2023 14 / 30

Dynamic programming formulation
Dynamic programming to MIP formulation

Let G = (V ,A) be the transition graph associated with the dynamic program.

maximize
∑
a∈A

paxa

subject to
∑

a∈A−(v)

xa −
∑

a∈A+(v)

xa = 0 v ∈ V

∑
a∈A−(v0)

xa = 1

∑
a∈A(i)

xa ≤ 1 i ∈ I

xa ∈ {0, 1} a ∈ A

Luis Marques Automatic Storage Design May 2023 15 / 30

Table of Contents

1 Introduction

2 Automatic Storage Design

3 Dynamic programming formulation

4 Improving the hypergraph formulation

5 Numerical results

6 Conclusion

Luis Marques Automatic Storage Design May 2023 16 / 30

Improving the linear relaxation
Consistency constraints

(2, 4,_)1

(2, 4,_)2

(. . .)

0.5 (2, 2,_)2 (2, 2,_)30.5
0.5

TKP
1

0.5

(. . .)

0.5
0.5

Figure: Example of fractional solution

We can assign items while using only "half" of the shelf.

∑
a∈A(i)

xa −
∑
h′≥hi

∑
a∈A(h)

xa ≤ 0 i ∈ I

Luis Marques Automatic Storage Design May 2023 17 / 30

Improving the linear relaxation
Consistency constraints

(2, 4,_)1

(2, 4,_)2

(. . .)

0.5 (2, 2,_)2 (2, 2,_)30.5
0.5

TKP
1

0.5

(. . .)

0.5
0.5

Figure: Example of fractional solution

∑
a∈A(i)

xa −
∑
h′≥hi

∑
a∈A(h)

xa ≤ 0 i ∈ I

Luis Marques Automatic Storage Design May 2023 17 / 30

Reduce the size of the hypergraph
Shelves height order

(8,_,_)1

(4,_,_)1

(6,_,_)1

(4,_,_)2

(2,_,_)2

(2,_,_)1

Figure: Example of symmetries

Solution: Consider shelf heights in a non-decreasing order similarly to
[Becker et al., 2022] and [Rodrigues et al., 2023].

Luis Marques Automatic Storage Design May 2023 18 / 30

Reduce the size of the hypergraph
Aggregate equivalent states

Although the dimensions may be different, states that have the same candidate items
are equivalent problems.

(10,_,_)1

(6,_,_)2

(4,_,_)1

(3,_,_)1

(7,_,_)2

hi ∈ {3, 6, 7}

Figure: Example of equivalent states

Luis Marques Automatic Storage Design May 2023 19 / 30

Reduce the size of the hypergraph
Aggregate equivalent states

Although the dimensions may be different, states that have the same candidate items
are equivalent problems.

(10,_,_)1

(6,_,_)2

(3,_,_)1

(7,_,_)2

hi ∈ {3, 6, 7}

Figure: Example of aggregated equivalent states

Luis Marques Automatic Storage Design May 2023 19 / 30

Reduce the size of the hypergraph
Trivial shelves

A shelf of height h and width w is trivial if all candidate items can be assigned to it. If a
shelf is trivial, the subproblem is replaced by a new stage.

(h1,_,_)1

(h2,_,_)1

w1

i1 i2 i3

w2 j1 j2 j3

w3

k1 k2

Source

Figure: Example of trivial shelf stage

Luis Marques Automatic Storage Design May 2023 20 / 30

Reduce the size of the hypergraph
Other improvements we do

Other improvements:

Reduce height of compartment design problem when a compartment is designed.

Detect trivial and partially trivial compartments.

Bound the number of times a height or a width is present.

Aggregate states of similar compartments.

Partially enumerate easy subproblem solutions.

Reverse the events list.

Luis Marques Automatic Storage Design May 2023 21 / 30

Table of Contents

1 Introduction

2 Automatic Storage Design

3 Dynamic programming formulation

4 Improving the hypergraph formulation

5 Numerical results

6 Conclusion

Luis Marques Automatic Storage Design May 2023 22 / 30

Numerical results
Experiments configuration
Two classes of instances are generated:

H = W = L = 500.

hi , wi , li , pi ∈ U(80, 170).

si and di are generated by cliques for the first class, si , di ∈ U(0, 1000) for the
second class, similarly to [Caprara et al., 2013]

Group |I|
C10 ∼ 75
C15 ∼ 110
C30 ∼ 215
U50 50
U70 70
U100 100
U200 200

Table: Average number of items per group of instances

Machine setup: Haswell Intel Xeon E5-2680 v3 CPU at 2.5 GHz with 128 Go RAM.
Solver: CPLEX 22.1.
Time limit: 30 minutes.

Luis Marques Automatic Storage Design May 2023 23 / 30

Numerical results
Comparison of formulations

Group NbVariables NbConstraints NbSolved
C10 17978 53858 22 / 40
C15 52103 159082 8 / 40
C30 373325 1142640 0 / 40
U50 5344 69163 39 / 40
U70 10427 181536 34 / 40
U100 21111 509268 28 / 40
U200 85438 3763636 20 / 40
Total – – 151 / 280

Table: Compact MIP formulation

Group NbVertices NbArcs NbSolved
C10 47562 61499 32 / 40
C15 180466 218640 28 / 40
C30 1533927 1761009 16 / 40
U50 5455 9800 39 / 40
U70 9186 17245 33 / 40
U100 14357 29223 31 / 40
U200 42620 101399 33 / 40
Total – – 212 / 280

Table: Hypergraph MIP formulation

The hypergraph formulation has around 4.8 times more variables but the compact
formulation has around 3.1 times more constraints.

Luis Marques Automatic Storage Design May 2023 24 / 30

Numerical results
Impact of improvements on hypergraph formulation

Group NbVertices NbArcs NbSolved
C10 47562 61499 32 / 40
C15 180466 218640 28 / 40
C30 1533927 1761009 16 / 40
U50 5455 9800 39 / 40
U70 9186 17245 33 / 40
U100 14357 29223 31 / 40
U200 42620 101399 33 / 40
Total – – 212 / 280

Table: Hypergraph MIP formulation

Group NbVertices NbArcs NbSolved
C10 19793 26081 32 / 40
C15 75142 91703 30 / 40
C30 708735 813834 15 / 40
U50 1453 3650 40 / 40
U70 2199 5831 37 / 40
U100 2894 8264 37 / 40
U200 7640 30951 37 / 40
Total – – 228 / 280

Table: Improved hypergraph MIP
formulation

The improved version has about 31% of the number of vertices and 37% of the number
of arcs.

Luis Marques Automatic Storage Design May 2023 25 / 30

Table of Contents

1 Introduction

2 Automatic Storage Design

3 Dynamic programming formulation

4 Improving the hypergraph formulation

5 Numerical results

6 Conclusion

Luis Marques Automatic Storage Design May 2023 26 / 30

Conclusion

We have seen:

A newly defined problem and a compact formulation for it.

A dynamic programming reformulation and a MIP to solve the problem related to
the DP’s hypergraph.

Several improvements useful to reduce the hypergraph’s size and the solution
space.

Perspectives:

Generic valid cuts for hypergraphs.

Improve trivial subproblems detection.

Study how partial solution enumeration could help solve the problem.

Study what aspects make the problem difficult to solve.

Luis Marques Automatic Storage Design May 2023 27 / 30

References I

Becker, H., Araújo, O., and Buriol, L. S. (2022).
Enhanced formulation for the Guillotine 2D Cutting Knapsack Problem.
Mathematical Programming Computation, 14(4):673–697.

Caprara, A., Furini, F., and Malaguti, E. (2013).
Uncommon dantzig-wolfe reformulation for the temporal knapsack problem.
INFORMS Journal on Computing, 25(3):560–571.

Caprara, A., Furini, F., Malaguti, E., and Traversi, E. (2016).
Solving the temporal knapsack problem via recursive dantzig-wolfe reformulation.
Information Processing Letters, 116(5):379 – 386.

Clautiaux, F., Detienne, B., and Guillot, G. (2021).
An iterative dynamic programming approach for the temporal knapsack problem.
European Journal of Operational Research, 293(2):442–456.

Luis Marques Automatic Storage Design May 2023 28 / 30

References II

de Queiroz, T. A., Miyazawa, F. K., Wakabayashi, Y., and Xavier, E. C. (2012).
Algorithms for 3d guillotine cutting problems: Unbounded knapsack, cutting stock
and strip packing.
Computers and Operations Research, 39(2):200–212.

Dell’amico, M., Furini, F., and Iori, M. (2020).
A branch-and-price algorithm for the temporal bin packing problem.
Computers and Operations Research, 114:104825.

Iori, M., De Lima, V. L., Martello, S., Miyazawa, F. K., and Monaci, M. (2021).
Exact solution techniques for two-dimensional cutting and packing.
European Journal of Operational Research, 289(2):399–415.

Martin, M., Oliveira, J. F., Silva, E., Morabito, R., and Munari, P. (2021).
Three-dimensional guillotine cutting problems with constrained patterns: Milp
formulations and a bottom-up algorithm.
Expert Systems with Applications, 168:114257.

Luis Marques Automatic Storage Design May 2023 29 / 30

References III

Rodrigues, C. D., Cherri, A. C., and de Araujo, S. A. (2023).
Strip based compact formulation for two-dimensional guillotine cutting problems.
Computers & Operations Research, 149:106044.

Roodbergen, K. J. and Vis, I. F. (2009).
A survey of literature on automated storage and retrieval systems.
European Journal of Operational Research, 194(2):343–362.

Luis Marques Automatic Storage Design May 2023 30 / 30

	Introduction
	Automatic Storage Design
	Dynamic programming formulation
	Improving the hypergraph formulation
	Numerical results
	Conclusion

