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Introduction

Automated storage and retrieval systems have been studied for years in the context of
warehouse optimization. See [Roodbergen and Vis, 2009] for a survey.

Different objectives can be optimised, such as response time, wasted space or overall
profit.

From a cutting and packing point of view, we see the problem as a variant of 3D
knapsack problem. We also consider a time aspect.

Figure: Example of 3D knapsack solution
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Automatic Storage Design

The problem is defined as a 3D temporal knapsack problem with additional constraints.

T : Set of consecutive time periods.

M: Storage box with a height H, a width W and a length L.

I: Set of items. Each item i has a height hi , a width wi , a length li , a profit pi , a
time period si at which it enters the storage and a duration di during which the
item is stored.

Objective: Maximise the sum of profits of items assigned to the box.
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Automatic Storage Design
The decisions represent a box design followed by an assignment of items.

Partition the box horizontally to form shelves.
Partition the shelves vertically to form compartments.
Assign items to compartments to maximise the profit.

Stage 1

Stage 2

Stage 1 with
modified height S1

S2S3

Figure: Example of automatic storage design

Figure: Example of design and
assignment with t = 0

Figure: Example of design and
assignment with t = 1

Luis Marques Automatic Storage Design May 4, 2023 6 / 26



Relation with the literature

Our problem is related to the three-dimensional three-stage guillotine packing problem
(see [de Queiroz et al., 2012] and [Martin et al., 2021] for works on this problem).

It generalizes the two-dimensional two-stage packing knapsack problem (see
[Iori et al., 2021] for a survey on 2D packing).

It also generalizes the temporal knapsack and temporal bin packing problems (see
[Caprara et al., 2013], [Caprara et al., 2016], [Clautiaux et al., 2021],
[Dell’amico et al., 2020], [?]).
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Automatic Storage Design

Decision variables:

zi ∈ {0, 1} is equal to 1 if a shelf of height hi with i ∈ I has been created, 0
otherwise.

yi,j ∈ {0, 1} is equal to 1 if a compartment of width wj with j ∈ I has been
created in the shelf of height hi with i ∈ I such that i ≤ j , 0 otherwise.

xi,j,k ∈ {0, 1} is equal to 1 if item k ∈ I has been assigned to the compartment of
height hi with i ∈ I and width wj with j ∈ I such that i ≤ j ≤ k, 0 otherwise.

x1,1,1 = 1

x1,1,3 = 1

y1,1 = 1

x1,2,2 = 1

y1,4 = 1

z1 = 1

Figure: Example of design and assignment

Luis Marques Automatic Storage Design May 4, 2023 8 / 26



Automatic Storage Design

maximize
∑
i∈I

∑
j∈I
j≥i

∑
k∈I
k≥j

pixi,j,k

subject to
∑
i∈I

zihi ≤ H

∑
j∈I
j≥i

yi,jwj ≤ W i ∈ I

∑
k∈I
k≥j

sk≤t≤sk+dk

lkxi,j,k ≤ L i , j ∈ I, j ≥ i , t ∈ T

∑
i,j∈I
i≤j≤k

xi,j,k ≤ 1 k ∈ I

xi,j,k ≤ yi,j i , j , k ∈ I, k ≥ j ≥ i

yi,j ≤ zi i , j ∈ I, j ≥ i

zi ∈ {0, 1} i ∈ I
yi,j ∈ {0, 1} i , j ∈ I, j ≥ i

xi,j,k ∈ {0, 1} i , j , k ∈ I, k ≥ j ≥ i
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Dynamic programming formulation

Guillotine 2D-packing can be solved by MIP models based on flows in hypergraphs (see
e.g. [Clautiaux et al., 2018]).

Temporal knapsack and bin packing problems can be solved by methods based on DP
and arc-flow models [Clautiaux et al., 2021, ?].

We propose a dynamic program to create a transition graph and use it to build an
arc-flow formulation (on an hypergraph).

Each state is noted by (h,w , l)s , h being the height, w the width, l the length and s
being the stage.
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Dynamic programming formulation

α1(h,w , l) = max
h′∈H,h′≤h

{α2(h′,w , l) + α1(h − h′,w , l)}

α2(h,w , l) = max
w′∈Wh,w

′≤w
{α3(h,w ′, l) + α2(h,w − w ′, l)}

(2, 4,_)1
(. . . )

(2, 4,_)2 (2, 2,_)2 (2, 2,_)3 Compartment

(1, 4,_)2

(1, 4,_)1

(. . . )

(1, 2,_)3

(1, 2,_)2

Compartment

Source

Figure: Example of hypergraph

Compartments, which are TKPs, are modeled by events as in [Clautiaux et al., 2021].
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Dynamic programming formulation
Dynamic programming to MIP formulation

Let G = (V ,A) be the transition hypergraph associated with the dynamic program.

maximize
∑
a∈A

paxa

subject to
∑

a∈A−(v)

xa −
∑

a∈A+(v)

xa = 0 v ∈ V

∑
a∈A−(v0)

xa = 1

∑
a∈A(i)

xa ≤ 1 i ∈ I

xa ∈ {0, 1} a ∈ A
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Reduce the size of the hypergraph
Aggregate equivalent states

Although the dimensions may be different, states that have the same candidate items
are equivalent problems.

(10,_,_)1

(6,_,_)2

(4,_,_)1

(3,_,_)1

(7,_,_)2

hi ∈ {3, 6, 7}

Figure: Example of equivalent states
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Reduce the size of the hypergraph
Aggregate equivalent states

Although the dimensions may be different, states that have the same candidate items
are equivalent problems.

(10,_,_)1

(6,_,_)2

(3,_,_)1

(7,_,_)2

hi ∈ {3, 6, 7}

Figure: Example of aggregated equivalent states
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Reduce the size of the hypergraph
Trivial subproblems

A subproblem of dimensions (h,w , l) is trivial if all candidate items can be assigned to it.

If a subproblem is trivial, we can relax the dimensions related to the capacity of the
compartment.

α3(_,_,_) i1 i2 i3 Source

Assign item

Ignore item

Figure: Example of vertices of trivial compartment
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Reduce the size of the hypergraph
Other improvements

Other improvements:

Break symmetries by imposing an order for heights and widths in the design.

Detect trivial shelves, trivial and partially trivial compartments.

Bound the number of times a height or a width is present.

Aggregate states of similar compartments.

Partially enumerate easy subproblem solutions.

Reverse the events list.

Luis Marques Automatic Storage Design May 4, 2023 17 / 26



Table of Contents

1 Introduction

2 Automatic Storage Design

3 Dynamic programming formulation

4 Improving the hypergraph formulation

5 Numerical results

6 Conclusion

Luis Marques Automatic Storage Design May 4, 2023 18 / 26



Numerical results
Experiments configuration
Two classes of instances are generated:

H = W = L = 500.

hi , wi , li , pi ∈ U(80, 170).

si and di are generated by cliques for the first class, si , di ∈ U(0, 1000) for the
second class, similarly to [Caprara et al., 2013]

Group |I|
C10 ∼ 75
C15 ∼ 110
C30 ∼ 215
U50 50
U70 70
U100 100
U200 200

Table: Average number of items per group of instances

Machine setup: Haswell Intel Xeon E5-2680 v3 CPU at 2.5 GHz with 128 Go RAM.
Solver: CPLEX 20.1.
Time limit: 30 minutes.
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Numerical results
Comparison of formulations

Group NbVariables NbConstraints NbSolved
C10 17759 53230 1 / 10
C15 49068 151939 0 / 10
C30 363145 1120488 0 / 10
U50 5420 69781 9 / 10
U70 10438 181547 4 / 10
U100 21204 504690 1 / 10
U200 86361 3791192 1 / 10
Total – – 16 / 70

Table: Compact MIP formulation

Group NbVertices NbArcs NbSolved
C10 146307 193277 2 / 10
C15 570665 698449 0 / 10
C30 5150654 5933438 0 / 10
U50 17183 32867 9 / 10
U70 30617 59912 3 / 10
U100 48738 102766 1 / 10
U200 150916 369086 4 / 10
Total – – 19 / 70

Table: Hypergraph MIP formulation

Both formulations have around the same number of constraints but the hypergraph
formulation has around 13.3 times more variables.
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Numerical results
Impact of improvements on hypergraph formulation

Group NbVertices NbArcs NbSolved
C10 146307 193277 2 / 10
C15 570665 698449 0 / 10
C30 5150654 5933438 0 / 10
U50 17183 32867 9 / 10
U70 30617 59912 3 / 10
U100 48738 102766 1 / 10
U200 150916 369086 4 / 10
Total – – 19 / 70

Table: Hypergraph MIP formulation

Group NbVertices NbArcs NbSolved
C10 38398,4 55888,7 2 / 10
C15 156530,2 199988,2 0 / 10
C30 1860081,7 2157920,8 0 / 10
U50 2533,9 10250,2 10 / 10
U70 4467,7 17300,1 7 / 10
U100 5374,7 23790,7 7 / 10
U200 15976 96790,2 7 / 10
Total – – 33 / 70

Table: Improved hypergraph MIP
formulation

The improved version has about 20% of the number of vertices and 29% of the number
of arcs.
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Conclusion

We have seen:

A newly defined problem and a compact formulation for it.

A dynamic programming reformulation and a MIP to solve the problem related to
the DP’s hypergraph.

Several improvements useful to reduce the hypergraph’s size and the solution
space.

Perspectives:

Improve trivial subproblems detection.

Improve partial solution enumeration.

Propose valid inequalities to improve the linear relaxation of the arc-flow model.

Thorough computational study.
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